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Abstract
The pressure–volume relation in sodium has been measured up to 100 GPa using
high-resolution angle-dispersive synchrotron x-ray diffraction (Hanfland et al
2002 Phys. Rev. B 65 184109). In the light of these data, we show that a model
suggested long ago (e.g., Varotsos et al 1978 J. Phys. C: Solid State Phys. 11
L305–15) can satisfactorily answer the long-standing question of the variation
of the diffusion coefficient D under pressure P , which resulted in a curved ln D
versus P plot, in the frame of a single operating mechanism (monovacancies).
This is achieved without using any adjustable parameters.

Both theoretical [1, 2] and experimental [3–6] studies have shown that Li and Na, which are
considered textbook examples of free electron metals (because of the single s electron in the
valence band), exhibit unexpected complexity at sufficiently high pressures. For example,
the observations of a resistivity increase at high pressures (P) and temperatures (T ) and the
discovery [4–6] of superconductivity in Li demonstrated that the alkali metals are not as simple
as we initially thought. Their pressure-induced complexity is attributed [1, 2] to the increased
role of core electrons becoming more appreciable with decreased volume. With the evidence of
a sequence of phases having complex crystal structures at high pressures in Li [3] and Na [7, 8],
these elements have recently attracted a great experimental and theoretical interest. Among
these experimental findings, we shall focus here on the pressure–volume (PV ) relation of
Na measured up to 100 GPa in [7] using high-resolution angle-dispersive synchrotron x-ray
diffraction (cf it was found that at 65 GPa Na undergoes a structural phase transition from bcc
to fcc). We shall show here that these accurate experimental measurements also shed light on
the unusual variation of the self-diffusion coefficient (D) in Na upon increasing pressure when
they are combined with an early suggestion [9–11]—called the cB� model (see also [12])—
which interconnects point defect parameters with bulk properties. Similar arguments can be
easily extended to Li, but here we shall intentionally prefer to discuss the case of Na since it
has been found [13, 14] to exhibit a more pronounced curvature in the ln D versus P plot. This
has challenged a large number of publications during the last 35 years.
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In Na, simultaneous measurements of the macroscopic thermal expansion and lattice
parameters (for a compilation of references, see [12]) demonstrate that vacancies and not
interstitials are the dominant intrinsic point defects in thermal equilibrium. The thermodynamic
parameters for the defect formation (f) process—designated by gf, hf, sf for the Gibbs energy,
enthalpy and entropy, respectively—are defined upon comparing a real (i.e., containing defects)
crystal to an isobaric ideal (i.e., not containing defects) crystal; see [12]. When a single
mechanism is operating, the (radiotracer) diffusion coefficient is given by

D = γα2ν exp

(
− gact

kT

)
(1)

where γ (beyond a numerical constant) is the correlation factor (= 0.727 for monovacancies
in bcc metals like Na), α stands for the lattice constant, gact denotes the Gibbs energy for
the activation (act) process and ν the attempt frequency which is of the order of the Debye
frequency νD. In most materials the plot of ln D versus P (for T = const) is found to be straight
line, which means that gact increases linearly upon increasing the pressure (for T = const). In
Na, however, this plot is found to deviate strongly from linearity. In particular, isothermal
radiotracer measurements at T = 288 and 364.3 K for pressures up to ∼1 GPa (as well as
measurements [15] of the NMR line-width at room temperature and pressures up to 5 GPa)
reveal that the quantity −kT (d ln D/dP)T —which gives the defect activation volume υact (see
also below)—continuously decreases upon increasing P . The most popular explanation for
this curvature of the ln D versus P plot was the following (for a compilation of references
see [12]): it results from the superposition of two or more diffusion mechanisms, namely the
monovacancy–divacancy model (rarely, e.g., see [16], the interstitial has been also suggested as
a significant contributor for self-diffusion but at temperatures close to melting). An alternative
explanation was forwarded long ago [9–11, 17], as mentioned above, which proposed that
this curvature can be described in the frame of a single mechanism (i.e., monovacancy) the
thermodynamic parameters of which exhibit reasonable intrinsic temperature and pressure
dependences. These were envisaged within the following model, to which we now turn.

The defect Gibbs energy gi is interconnected with the bulk properties of the solid through
the relation [9–11] (cf a survey of its proof can be found in pages 363–401 of [12]):

gi = ci B� (2)

where B stands for the isothermal bulk modulus, � the mean volume per atom and ci is dimen-
sionless, which can be considered—to the first approximation—independent of temperature
and pressure (cf this approximation holds if the ratio �P/B—where �P refers to the pressure
range of our experimentation—is appreciably smaller than unity; otherwise a small correction
factor should be also incorporated; see page 126 of [12]). The superscript i in equation (2)
refers to the defect process under consideration, i.e., i = f, act, and m stand for the formation,
self-diffusion activation and migration, respectively. By differentiating equation (2) in respect
to pressure, we find the activation volume υact(= −dgact/dP)T for the diffusion process:

υact = cact�

(
dB

dP

∣∣∣∣
T

− 1

)
(3)

which can be alternatively written as

υact = gact

B

(
dB

dP

∣∣∣∣
T

− 1

)
. (4)

The validity of equation (4) has been checked for the self-diffusion processes in a variety of
solids [18, 19] as well as for the indenter penetration into a (ionic) crystal surface [20] (during
which transient electric signals are emitted, in a similar fashion to the signals measured [21–23]
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before earthquakes). Furthermore, we note that the above procedure can be also applied
to mixed ionic solids since their B-values used in equation (2) can be estimated from the
corresponding B-values of the pure constituents [24].

We now proceed to the presentation of our results related to the pressure variation of D in
Na. The quantity υact is experimentally determined through the slope of the ln D versus P plot
by means of the procedure mentioned above. It is clear that only if υact is arbitrarily assumed as
pressure independent (which is usually adopted in the monovacancy–divacancy model for each
of the mechanisms involved) is the ln D versus P plot expected to be a straight line. However,
it is reasonable to consider that, even in the case of a single operating mechanism, υact may
vary upon compression. Thus, the curvature of the ln D versus plot can be described in terms
of the compressibility κact defined as

κact ≡ −(d ln υact/dP)T . (5)

The data analysis [10, 11, 17] of the plots obtained in the experiment of [13], for T = 288
and 364.5 K, indicate that their curvatures can be fully described by the values κact =
(33 ± 5) × 10−2 GPa−1 and (51 ± 6) × 10−2 GPa−1, respectively (see also page 127 of [12]).
Hence, the question arises whether these κac-values can be predicted by the cB� model. By
inserting equation (3) into equation (5), the following relation is obtained [10, 11]:

κact = 1

B
− B

d2 B

dP2

∣∣∣∣T

(
dB

dP

∣∣∣∣
T

− 1

)−1

. (6)

Quite interestingly, this equation reveals that a property of the defect volume (i.e., κact) can be
calculated in terms of the bulk elastic data without the knowledge of any other defect parameter.
Let us now consider the elastic data in Na measured at room temperature (RT) by Hanfland et al
[7]. For fitting the PV data, they used the relation of Holzapfel [25]:

P = 3B0 X−n(1 − X) exp {[1.5(dB0/dP) − n + 0.5](1 − X)}
with X = (V/V0)

1/3 and n = 5 (7)

where V0, B0 are the volume and the bulk modulus, respectively, at a reference pressure (usually
ambient pressure). By assigning a relative error of 1.5% at each pressure value, they reported
(see their table 1)—by fitting equation (7) to the bcc phase data—the following results at
ambient pressure:

B0 = 6.310(80) GPa and (dB/dP)0 = 3.866(20). (8)

Concerning the quantity (d2 B/dP2)|T , it can be determined of course by differentiating
equation (7). To simplify the situation, however, we took advantage of the following remark
made by Hanfland et al [7]: their data can be equally well described (in a least-squares sense) by
a Birch (also termed third-order Birch–Murnaghan) equation [26], the corresponding parameter
values of which are similar to those obtained for equation (7). The consistency of equation (7)
and Birch relations over a wide range of pressure and density can also be seen in figure 6(a) of
Hanfland et al [7] where they plotted with parallel solid straight lines the correlation between
(dB0/dP)|T and B0 for these two fits. From the slope of these lines one easily finds (at RT)

(d2 B/dP2)|T ≈ −0.4 GPa−1. (9)

By inserting equations (8) and (9) into equation (6), we get (at RT)

κact ≈ 0.3 GPa−1. (10)

This value, which we recall was calculated by making use of the bulk elastic data of Hanfland
et al [7] alone, is in striking agreement with the aforementioned value κact ≈ (33 ± 5) ×
10−2 GPa−1 obtained from the analysis of the diffusion data at various pressures, at T = 288 K.
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Unfortunately, an application of equation (6) to the higher temperature T = 364.5 K, at
which diffusion data under pressure have been also obtained, cannot be made, because the
quantity (d2 B/dP2)|T is unknown at that temperature, since the experiment of Hanfland et al
[7] was carried out solely at RT (which is of course close to T = 288 K, thus allowing the
aforementioned direct comparison of the experimental κact value with the one obtained from
equation (6)). Upon comparing, at T = 288 K, either the experimental or the theoretical
value (resulted from equation (6)) of κact to the bulk compressibility κ = (1/B0, where
B0 = 6.31 GPa [7]), we find that they have a ratio: κact/κ ≈ 1.9. In other words, the self-
diffusion activation volume decreases on compression with a rate faster than the bulk volume,
a point that has been already stressed in [10, 11].

We now turn to the formation volume υ f for which, however, no direct experimental
determination is yet available. Thus, we shall restrict ourselves here to a comparison of the
predictions of the cB� model with those obtained from microscopic calculations [27, 28].
Before proceeding, we clarify that in [12] (see page 205) the cf-value for the (mono)vacancy
formation process has been calculated as follows: the concentration n/N of (mono)vacancies
is given by

n/N = exp(−gf/kT )

and hence—through equation (2) for i = f—we have

n/N = exp(−cf B�/kT ).

This equation, when using T = 370.2 K (which is close to the melting point T = 370.9 K), the
values � = 40.069×10−24 cm3, B = 5.744 GPa (see table 9.12 of [12]) and the concentration
n/N ≈ 7 ×10−14 reported in [29] at the melting point, gives the value c f = 0.159. This value,
when inserted into the relation υ f = cf�( dB

dP |T − 1)—similar to equation (3) but applied here
to the formation process—leads to (after using the aforementioned value ( dB

dP )0 = 3.886, see
equation (8))

υ f ≈ 0.46 � (11)

which is in reasonable agreement with the υ f-value of about 0.5 � deduced from the
microscopic calculations of [27, 28]. The resulting value in equation (11) decreases upon
increasing pressure, in view of the negative sign of d2 B

dP2 |T discussed above—a behaviour
which is similar to the one found also in the microscopic calculations of [27, 28]. The latter
calculations also report that the migration volume (determined within the framework of the so-
called transition-state theory) is much smaller than υ f, a point which again agrees with an early
expectation [10].

In summary, we have used the pressure–volume relation that was recently measured in
Na by Hanfland et al [7] and led to reliable values of the B0, (dB/dP)0 and − d2 B

dP2 |T at RT.
On the basis of these elastic data alone, we have shown that the cB� model suggested long
ago [9–12, 18, 19] leads to a diffusion activation volume in Na that decreases rapidly upon
increasing pressure and has a compressibility κact which is in striking agreement with the one
deduced from the analysis of diffusion data under pressure. This enables the explanation of the
curvature observed in the ln D versus P plot on the basis of a single operating mechanism, i.e.,
monovacancies, without any necessity of resorting to multi-mechanism approaches suggested
repeatedly during the last 35 years.

References

[1] Neaton J B and Ashcroft N W 1999 Nature 400 141–4
[2] Neaton J P and Ashcroft N W 2001 Phys. Rev. Lett. 86 2830–3

4

http://dx.doi.org/10.1038/22067
http://dx.doi.org/10.1103/PhysRevLett.86.2830


J. Phys.: Condens. Matter 19 (2007) 176231 P Varotsos

[3] Hanfland M, Syassen K, Christensen N E and Novicov D L 2000 Nature 408 174–8
[4] Shimizu K, Ishikawa H, Takao D, Yagi T and Amaya K 2002 Nature 419 597–9
[5] Struzhkin V V, Eremets M I, Gan W and Mao H 2002 Science 298 1213–5
[6] Deemyaad S and Schilling J S 2003 Phys. Rev. Lett. 91 167001
[7] Hanfland M, Loa I and Syassen K 2002 Phys. Rev. B 65 184109
[8] Gregoryanz E, Degtyareva O, Somayazulu M, Hemley R J and Mao H K 2005 Phys. Rev. Lett. 94 185502
[9] Varotsos P and Alexopoulos K 1977 Phys. Rev. B 15 4111–4

Varotsos P and Alexopoulos K 1977 Phys. Rev. B 15 2348–51
Varotsos P and Alexopoulos K 1977 J. Phys. Chem. Solids 38 997–01
Varotsos P and Alexopoulos K 1977 J. Physique Lett. 38 L455–58
Varotsos P, Ludwig W and Alexopoulos K 1978 Phys. Rev. B 18 2683–91

[10] Varotsos P and Ludwig W 1978 J. Phys. C: Solid State Phys. 11 L305–9
see also Varotsos P and Alexopoulos K 1978 Phys. Status Solidi a 47 K133–6

[11] Varotsos P, Ludwig W and Falter C 1978 J. Phys. C: Solid State Phys. 11 L311–5
[12] Varotsos P and Alexopoulos K 1986 Thermodynamics of Point Defects and Their Relation with the Bulk

Properties ed S Amelinckx, R Gevers and J Nihoul (Amsterdam: North-Holland) p 474
[13] Mundy J N 1971 Phys. Rev. B 3 2431–45
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